Pietro Lunardi Design and Construction of Tunnels

Analysis of Controlled Deformation in Rock and Soils (ADECO-RS)

Contents a phone of pathoase encodes added to be dealer A 128

Preface	XIII
A note to the reader	XV
Thanks	XVII

FROM THE RESEARCH TO ADECO-RS

1	The	dynami	cs of tun	nel advance		3		
	1.1	The ha	isic conce	nts		3		
	1.2	The m	edium	pto	W evenen	7		
	1.3					9		
	1.4					11		
2	The	The deformation response of the medium to excavation						
	2.1	The ex	perimenta	and theore	etical research	15		
		2.1.1			age			
		2.1.2			h stage			
			2.1.2.1	The exam	ole of the Frejus motorway tunnel (1975)	21		
			2.1.2.2		ple of the "Santo Stefano" tunnel (1984)			
			2.1.2.3		a tunnel (1985)			
			2.1.2.4	The exam	ple of the "Tasso" tunnel (1988)	31		
			2.1.2.5	The result	s of the second research stage	33		
		2.1.3	The third	d research s	tage	35		
			2.1.3.1		tunnel (1991)			
					A brief history of the excavation			
				2.1.3.1.2		47		
				2.1.3.1.3	The diagnosis phase	49		
				2.1.3.1.4	Assessment of the stress-strain			
					behaviour	49		
				2.1.3.1.5	The therapy phase	49		
				2.1.3.1.6	The operational phase	55		
				2.1.3.1.7	The monitoring phase during			
					construction	57		
			2.1.3.2	Results of	the third research stage	61		
	2.2	The ac			ilisation instrument	65		
	2.3				t of reference for tunnel specifications	66		

V		

Contents

3			the deformation response according	
	to th	ne ADEC	CO-RS approach	69
	3.1	Experi	mental and theoretical studies	69
		3.1.1	Full scale experimentation	71
		3.1.2	Laboratory experimentation	77
	3.2	Numer	ical analyses	83
		3.2.1	Studies using analytical approaches	83
		3.2.2	Studies using numerical approaches	
			on axial symmetrical models	85
		3.2.3		89
	3.3	Result	s of the experimental and theoretical analyses	
		of the	deformation response	91
4	Con	trol of t	he deformation response according	
			CO-RS approach	93
	4.1		I ahead of the face	95
	4.2		I in the tunnel back from the face	95
5	The	analysi	s of controlled deformation in rocks and soils	105
			opment of the new approach	105
		5.1.1	Conceptual framework according	
			to the ADECO-RS approach	107
			5.1.1.1 Category A	
			5.1.1.2 Category B	
			5.1.1.3 Category C	
		5.1.2	The different stages of the ADECO-RS approach	

THE DESIGN STAGE

6	The survey	phase		121
	6.1 Introdu	uction		121
	6.1.1	The basi	ic concepts of the survey phase	121
			vey phase for conventional excavation	123
			The geomorphological and hydrogeological	
			characteristics of the area	125
		6.1.2.2	Location and definition of the terrain through	
			which the underground alignment passes	127
		6.1.2.3	Tectonics, geological structure and the stress	
			state of the rock mass	129
		6.1.2.4	Hydrogeological regime of the rock mass	133
		6.1.2.5	Geomechanical characteristics of the materials	133
	6.1.3	The surv	vey phase for TBM excavation	139
	6.1.4	Geologie	cal surveys for excavation	
		with pre	liminary pilot tunnel	141
	6.1.5		nsiderations	145

-						
C	0.1	- 1	01	ni	e	
- 10	U 1		101		0	

7

8

The c	liagnosis phase	153
7.1	Background	153
7.2	The basic concepts of the diagnosis stage	153
7.3	Identification of sections with uniform stress-strain behaviour	155
7.4	Calculation methods for predicting the behaviour category	159
7.5	Assessing the development of the deformation response	165
7.6	Portals	167
1.0	7.6.1 Lithology, morphology, tectonics and structure	
	of the slope to be entered	169
	7.6.2 Hydrology, pre-existing buildings and structures	
	and environmental constraints	169
	7.6.3 Geomechanical characteristics of the ground	171
	7.6.4 Forecasting the deformation behaviour of the slope	171
7.7	Final considerations	173
1.1		
The 1	herapy phase	175
8.1	Background	175
8.2	Basic concepts of the therapy phase	177
8.3	Excavation systems	183
8.4	Mechanised or conventional excavation?	185
8.5	Tunnel boring machines in relation to the confinement	
0.0	action they exert	191
8.6	Design using conventional excavation	195
8.7	Stabilisation intervention	199
0.1	8.7.1 Preconfinement intervention	205
	8.7.1 Precomment intervention	203
	8.7.3 Presupport and support intervention	209
0.0	Composition of typical longitudinal and cross sections	
8.8	Composition of typical longitudinal and cross sections	203
8.9	The dimensions and verification of tunnel section types	
8.10	8.10.1 Solid load calculation methods	221
	8.10.1 Solid load calculation methods	221
0.11	0.10.2 Plasticised ing calculation methods	225
8.11	Particular aspects of the therapy phase	220
	8.11.1 Tunnels under the water table	220
	8.11.2 Adjacent tunnels	201
	8.11.3 Tunnels with two faces approaching each other	201
	8.11.4 Portals	230
8.12	Final considerations	231

IX

THE CONSTRUCTION STAGE

9	The	operational phase	241
	9.1	Background	241
	9.2	The basic concepts of the operational phase	241
	9.3	Excavation	243

X

	9.4	Cavity	preconfinement intervention	247
		9.4.1	Cavity preconfinement by means	
			of full face mechanical precutting	247
		9.4.2	Cavity preconfinement using pretunnel technology	257
		9.4.3	Preconfinement of the tunnel after strengthening	
			the core-face with fibre glass reinforcement	267
		9.4.4	Preconfinement of the tunnel by means of truncated cone	
			'umbrellas' formed by sub horizontal columns of ground side	
			by side improved by jet-grouting	279
		9.4.5	Preconfinement of the tunnel by means of truncated cone	
			'umbrellas' of ground improved by means of conventional	
			grouting	289
		9.4.6	Preconfinement of the tunnel by means of truncated cone	
			'umbrellas' of drainage pipes ahead of the face	295
	9.5	Cavity	confinement intervention	301
		9.5.1	Confinement of the cavity by means of radial rock bolts	301
		9.5.2	Cavity confinement using a preliminary lining shell	
			of shotcrete	307
		9.5.3	Confinement of the cavity by means of the tunnel invert	313
		9.5.4	Confinement of the cavity by means of the final lining	315
	9.6	Waterp	proofing	317
10	The	monitor	ring phase	321
	10.1	Backor	round	321
			concepts	323
			rement stations	
	10.0	10.3.1		
		10.3.2		
		10.3.3		
		10.3.4		
	10.4		sign of the system for monitoring during construction	
			ring the tunnel when in service	
			erpretation of measurements	
	10.0	10.6.1		
		10.6.2		
			The interpretation of convergence measurements	
	10.7		analysis procedures	
			Fine tuning of the design during construction	
			of the tunnel beneath the Mugello international motor racing	
			track with a shallow overburden	357
			10.7.1.1 The survey phase	357
			10.7.1.2 The diagnosis phase	359
			10.7.1.3 The therapy phase	361
			10.7.1.4 The monitoring programme	361
			10.7.1.5 Final calibration of the design	
			based on monitoring feedback	363
			10.7.1.6 The operational phase	367
			10.7.1.7 The monitoring phase	367

-				
0	nn^{\prime}	ton	its	
10	· · · ·	1011	110	

Final consider	rations	371
APPENDICES		
Introduction t	o the appendices	383
Appendix A	The design and construction of tunnels for the new Rome-Naples high speed/capacity railway line	385
Appendix B	The design and construction of tunnels for the new Bologna-Florence high speed/capacity railway line	413
Appendix C	The Tartaiguille tunnel	453
Appendix D	Cellular arch technology	471
Appendix E	Artificial Ground Overburdens (A.G.O.)	493
Appendix F	Portals in difficult ground	509
Appendix G	Widening road, motorway and railway tunnels without interrupting use	539
Glossary		559
Bibliography		567
Contents of t	the special focus boxes	573

XI

a coastruction is the timplet assumption of the ground to excavation in the two dovise of the commercianes to stabilities a transf in the short and file medium term has not always bin at the basis of maleren and construction in the instrumenty some instances based on incorrect sciencific theory, filey acverticeless constituted out progress at the tone. This brought them great success at first, and despite characters failures, they have managed metric relative and flourish, assisted by a lack or these methods, led by the NATM, were not only found to be inadequate in restruction geotechnical and geomechanical constitution, bin they also appear very much due times, because they cannot by their very matter formish solutions which will be times, because they cannot by their very matter formish solutions which will be consumedian to be planned in any way in terms of finance and schedules, an the follow essential requirement for transparent and gradent management of resources after societies.